论文标题
用应用缩小Ricci孤子的尖锐的li-yau平等
The sharp Li-Yau equality on Shrinking Ricci Solitons with applications
论文作者
论文摘要
我们证明,在没有任何曲率或体积假设的情况下缩小RICCI孤子的结合热内核方面,尖锐的li-yau平等性具有。该数量得出了几个估计值,使我们能够将四个维,非紧密缩小的RICCI孤子子分类为Ricci流的I型奇异模型。
We prove that the sharp Li-Yau equality holds for the conjugate heat kernel on shrinking Ricci solitons without any curvature or volume assumptions. This quantity yields several estimates which allows us to classify four dimensional, non-compact shrinking Ricci solitons, which arise as Type I singularity models to the Ricci flow.