论文标题

双线性通用矢量近似消息传递

Bilinear Generalized Vector Approximate Message Passing

论文作者

Akrout, Mohamed, Housseini, Anis, Bellili, Faouzi, Mezghani, Amine

论文摘要

我们介绍了双线性广义矢量近似消息传递(大型vamp)算法,该算法通过概率观察模型从其嘈杂产物中共同恢复了两个矩阵U和V。 Big-Vamp提供了最大值和Sumproduct Loopropy信念传播(BP)的计算有效近似实现。我们展示了所提出的大型算法如何恢复不同类型的结构化矩阵,并克服了针对双线性恢复问题的其他最先进方法的基本局限性,例如大型AMP,BAD-IVAMP和LOWRAMP。从本质上讲,大型vamp适用于涉及一般形式结构化矩阵的更广泛的实际应用。为了进行理论性能预测,我们还对所提出的算法进行了状态进化(SE)分析,并显示了其与渐近经验均值误差(MSE)的一致性。对矩阵分解,词典学习和矩阵完成等各种应用的数值结果表明,提出的大型vamp算法的有效性及其对算法的优势。使用开发的SE框架,我们还检查了(作为一个示例)矩阵完成问题的相变图,从而揭示了与低信噪比(SNR)制度相对应的低可检测性区域。

We introduce the bilinear generalized vector approximate message passing (BiG-VAMP) algorithm which jointly recovers two matrices U and V from their noisy product through a probabilistic observation model. BiG-VAMP provides computationally efficient approximate implementations of both max-sum and sumproduct loopy belief propagation (BP). We show how the proposed BiG-VAMP algorithm recovers different types of structured matrices and overcomes the fundamental limitations of other state-of-the-art approaches to the bilinear recovery problem, such as BiG-AMP, BAd-VAMP and LowRAMP. In essence, BiG-VAMP applies to a broader class of practical applications which involve a general form of structured matrices. For the sake of theoretical performance prediction, we also conduct a state evolution (SE) analysis of the proposed algorithm and show its consistency with the asymptotic empirical mean-squared error (MSE). Numerical results on various applications such as matrix factorization, dictionary learning, and matrix completion demonstrate unambiguously the effectiveness of the proposed BiG-VAMP algorithm and its superiority over stateof-the-art algorithms. Using the developed SE framework, we also examine (as one example) the phase transition diagrams of the matrix completion problem, thereby unveiling a low detectability region corresponding to the low signal-to-noise ratio (SNR) regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源