论文标题
tete-a-tetes的无监督抽象对话摘要
Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes
论文作者
论文摘要
高质量的对话 - 萨华配对数据对于生产和域名敏感的数据很昂贵,这使得抽象性对话摘要成为一项艰巨的任务。在这项工作中,我们提出了第一个无监督的抽象对话摘要模型(SUTAT)。与标准文本摘要不同,对话摘要方法应考虑扬声器具有不同角色,目标和语言风格的多演讲者方案。在诸如客户代理对话之类的Tete-a-Tete中,Sutat的目标是通过对客户的话语和代理人的言论进行建模,同时保留其相关性,来总结每个发言人。 SUTAT由有条件的生成模块和两个无监督的摘要模块组成。有条件的生成模块包含两个编码器和两个解码器,在差异自动编码器框架中,其中捕获了两个潜在空间之间的依赖关系。在相同的编码器和解码器的情况下,配备有句子级别的自我发言机制的两个无监督的摘要模块可生成摘要,而无需使用任何注释。实验结果表明,Sutat在自动评估和人类评估的无监督对话摘要方面表现出色,并且能够进行对话分类和单转交谈。
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstractive dialogue summarization a challenging task. In this work, we propose the first unsupervised abstractive dialogue summarization model for tete-a-tetes (SuTaT). Unlike standard text summarization, a dialogue summarization method should consider the multi-speaker scenario where the speakers have different roles, goals, and language styles. In a tete-a-tete, such as a customer-agent conversation, SuTaT aims to summarize for each speaker by modeling the customer utterances and the agent utterances separately while retaining their correlations. SuTaT consists of a conditional generative module and two unsupervised summarization modules. The conditional generative module contains two encoders and two decoders in a variational autoencoder framework where the dependencies between two latent spaces are captured. With the same encoders and decoders, two unsupervised summarization modules equipped with sentence-level self-attention mechanisms generate summaries without using any annotations. Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations, and is capable of dialogue classification and single-turn conversation generation.