论文标题
使用梯度下降的学习函子
Learning Functors using Gradient Descent
论文作者
论文摘要
神经网络是可区分优化的一般框架,其中包括许多其他机器学习方法作为特殊情况。在本文中,我们围绕着称为Cyclegan的神经网络系统建立类别理论形式主义。 Cyclegan是一种不配对的图像到图像翻译的通用方法,近年来一直引起人们的注意。受分类数据库系统的启发,我们表明CycleGAN是一个“架构”,即发电机和关系提出的特定类别,其特定参数实例仅在此架构上是设置值的函数。我们表明,执行周期矛盾等于在此类别中执行组成不变。我们将学习过程推广到任意类别,并显示出特殊的功能因素而不是功能,可以使用梯度下降来学习。使用此框架,我们设计了一种能够学习的新型神经网络系统,可以从没有配对数据的情况下从图像中插入和删除对象。我们在Celeba数据集上定性评估该系统并获得有希望的结果。
Neural networks are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this paper we build a category-theoretic formalism around a neural network system called CycleGAN. CycleGAN is a general approach to unpaired image-to-image translation that has been getting attention in the recent years. Inspired by categorical database systems, we show that CycleGAN is a "schema", i.e. a specific category presented by generators and relations, whose specific parameter instantiations are just set-valued functors on this schema. We show that enforcing cycle-consistencies amounts to enforcing composition invariants in this category. We generalize the learning procedure to arbitrary such categories and show a special class of functors, rather than functions, can be learned using gradient descent. Using this framework we design a novel neural network system capable of learning to insert and delete objects from images without paired data. We qualitatively evaluate the system on the CelebA dataset and obtain promising results.