论文标题

在线资源分配的激励兼容机制,即服务系统

Incentive-compatible mechanisms for online resource allocation in mobility-as-a-service systems

论文作者

Xi, Haoning, Liu, Wei, Rey, David, Waller, S. Travis, Kilby, Philip

论文摘要

在“一切都在服务”的背景下,运输部门一直在以用户为中心的业务模型发展,其中定制服务和模式不可能的移动性资源在统一的框架中定价。然而,在绝大多数关于移动性作为服务(MAAS)系统的研究中,移动性资源定价基于分段的旅行模式,例如私家车,公共交通和共享出行服务。这项研究试图通过引入基于创新拍卖的在线MAAS机制来解决这一研究差距,用户可以根据其愿意支付和偏好来竞标任何数量的模式不足的移动性资源。我们采用MAAS监管机构的观点,旨在通过向用户分配机动性资源来最大化社会福利。我们提出了两种机制,这些机制允许用户立即使用移动服务(付款方式)或订阅移动服务软件包(付款方式)(付款方式)。我们将基于拍卖的机制作为在线资源分配问题进行了投射,用户竞争MAAS资源并竞标每次旅行时间。我们建议(整数)线性编程公式,以在线优化方法中基于可用的移动性资源来容纳用户出价。我们表明,提出的MAAS机制是激励兼容的,开发自定义的在线算法并根据竞争分析得出绩效界限。大量的数值模拟是对实际的移动性数据产生的大规模实例进行的,该实例强调了拟议的MAAS机制的好处以及所提出的在线优化方法的有效性。

In the context of `Everything-as-a-Service', the transportation sector has been evolving towards user-centric business models in which customized services and mode-agnostic mobility resources are priced in a unified framework. Yet, in the vast majority of studies on Mobility as a Service (MaaS) systems, mobility resource pricing is based on segmented travel modes, e.g. private vehicle, public transit and shared mobility services. This study attempts to address this research gap by introducing innovative auction-based online MaaS mechanisms where users can bid for any amount of mode-agnostic mobility resources based on their willingness to pay and preferences. We take the perspective of a MaaS regulator which aims to maximize social welfare by allocating mobility resources to users. We propose two mechanisms which allow users to either pay for the immediate use of mobility service (pay-as-you-go), or to subscribe to mobility service packages (pay-as-a-package). We cast the proposed auction-based mechanisms as online resource allocation problems where users compete for MaaS resources and bid for travel time per trip. We propose (integer-) linear programming formulations to accommodate user bids based on available mobility resources in an online optimization approach. We show that the proposed MaaS mechanisms are incentive-compatible, develop customized online algorithms and derive performance bounds based on competitive analysis. Extensive numerical simulations are conducted on large scale instances generated from realistic mobility data, which highlight the benefits of the proposed MaaS mechanisms and the effectiveness of the proposed online optimization approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源