论文标题
通过使用变分量子算法和反应路径生成的化学反应路径优化的量子算法优化化学反应路径
Quantum algorithm for a chemical reaction path optimization by using a variational quantum algorithm and a reaction path generation
论文作者
论文摘要
搜索可以在当前量子计算机上执行的量子化学的新计算任务对于开发量子计算和量子化学非常重要。尽管化学反应的计算在量子化学计算中具有广泛的应用,但是尚未执行用于获得激活能量$ e_a $的量子算法,该算法尚未进行确定化学反应速率的量子。在这项研究中,我们为化学反应路径优化提出了一种量子算法,以获得$ e_a $。在我们的算法中,量子电路不仅可以用于量子量子质量(VQE)的能量评估,还可以用于化学反应路径的产生。化学反应路径是通过编码到电路,操作参数化门的初始反应路径并通过测量提取路径信息来获得的。使用弹性的弹性带方法来优化反应路径,并且路径上每个状态的基态计算是通过VQE或精确的对角线化(ED)进行的。提出的算法应用于$ \ mathrm {h} _2 + \ \ \ \ \ \ \ \ \ \ \ rightArrow \ rightArrow \ MathRm {h} _2 + \ mathrm {h h} $反应,我们确认在VQE和ED中都准确地获得了$ e_a $。我们还获得了数值结果,即图像之间的纠缠加速了路径优化。从这些结果中,我们显示了使用量子算法进行快速准确的化学反应计算的可行性。
The search for new computational tasks of quantum chemistry that can be performed on current quantum computers is important for the development of quantum computing and quantum chemistry. Although calculations of chemical reactions have a wide range of applications in quantum chemical calculations, a quantum algorithm for obtaining activation energy $E_a$, which determines the rate of chemical reactions, has not been performed. In this study, we propose a quantum algorithm for the chemical reaction path optimization to obtain $E_a$. In our algorithm, quantum circuits can be used not only for the energy evaluation by the variational quantum eigensolver (VQE) but also for chemical reaction path generation. The chemical reaction path is obtained by encoding the initial reaction path to the circuit, operating parameterized gates, and extracting the path information by measurement. The nudged elastic band method was used for optimizing a reaction path, and the ground-state calculation for each state on the path was performed by the VQE or the exact diagonalization (ED). The proposed algorithm was applied to $\mathrm{H}_2 + \mathrm{H} \rightarrow \mathrm{H}_2 + \mathrm{H}$ reaction, and we confirmed that $E_a$ was obtained accurately in the case of both the VQE and the ED. We also obtained numerical results that the entanglement between the images accelerates the path optimization. From these results, we show the feasibility of performing fast and accurate chemical reaction calculations by using quantum algorithms.