论文标题

Mod 2 Seiberg-witten不变的简单类型的猜想

The simple type conjecture for mod 2 Seiberg-Witten invariants

论文作者

Kato, Tsuyoshi, Nakamura, Nobuhiro, Yasui, Kouichi

论文摘要

我们证明,在同一个共同体环的简单条件下,每个封闭的4个manifold都有mod 2 seiberg-witten的简单类型。该结果表明,存在大量的拓扑4个manifolds,因此所有平滑的结构具有MOD 2的简单类型,但有些则具有不变的(MOD 2)Seiberg-witten不变性。作为推论,我们获得了邻接不平等,并表明在温和的拓扑条件下,每个几何连接的封闭的4个manifold都具有消失的mod 2 seiberg-witten不变性,至少是一个方向。

We prove that, under a simple condition on the cohomology ring, every closed 4-manifold has mod 2 Seiberg-Witten simple type. This result shows that there exists a large class of topological 4-manifolds such that all smooth structures have mod 2 simple type, and yet some have non-vanishing (mod 2) Seiberg-Witten invariants. As corollaries, we obtain adjunction inequalities and show that, under a mild topological condition, every geometrically simply connected closed 4-manifold has the vanishing mod 2 Seiberg-Witten invariant for at least one orientation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源