论文标题

QUTRIT启发的完全自我监督的浅量子学习网络用于脑肿瘤分割

Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation

论文作者

Konar, Debanjan, Bhattacharyya, Siddhartha, Panigrahi, Bijaya K., Behrman, Elizabeth

论文摘要

经典的自我监管网络由于强大的终止而遭受融合问题和分割精度的降低。 Qubits或双层量子位通常描述量子神经网络模型。在本文中,提出了一种新型的自我监督的浅学习网络模型,该网络模型利用了复杂的三级Qutrit启发的量子信息系统,称为量子完全自我监督的神经网络(QFS-NET),以自动化脑MR图像的自动段。 QFS-NET模型包括使用基于二阶二阶邻里拓扑的参数Hadamard门相互联系的QUTRIT的分层结构的三位一体。 QUTRIT状态的非线性转换允许基础量子神经网络模型编码量子状态,从而在不监督的情况下在层之间对这些状态进行更快的自组织反向传播。建议的QFS-NET模型是根据自然存储库收集的癌症成像档案(TCIA)数据集的定制和广泛验证的,并且还与受监督的最先进的状态(U-NET和URES-NET架构)和自我监督的QIS-NET模型进行了比较。结果在最低限度的人类干预和计算资源方面,以骰子的相似性和准确性来检测肿瘤方面有希望的细分结果。

Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bi-level quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system referred to as Quantum Fully Self-Supervised Neural Network (QFS-Net) is presented for automated segmentation of brain MR images. The QFS-Net model comprises a trinity of a layered structure of qutrits inter-connected through parametric Hadamard gates using an 8-connected second-order neighborhood-based topology. The non-linear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counter-propagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on Cancer Imaging Archive (TCIA) data set collected from Nature repository and also compared with state of the art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model. Results shed promising segmented outcome in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源