论文标题

复杂的对称性和koenigs本征函数之间的相互作用

Interplay between complex symmetry and Koenigs eigenfunctions

论文作者

Noor, S. Waleed, Severiano, Osmar R.

论文摘要

我们研究了由开放单位磁盘的分析自动映射$ ϕ $及其koenigs eigenigs eigenigs eigenfunuttion。被称为共轭 - 实行性的正交性的概括将在这项工作中起关键作用。我们表明,如果$ ϕ $是schröder地图(用$ 0 <| 0 <| ϕ'(a)| <1 $)和$σ$是其koenigs egenigs eigenfunction,那么$ c_x $是$ c_D $,那么$ c_D $ ar是复杂的IF(IS),iS ig(n) $ h^2(\ mathbb {d})$中的共轭 - 正交。我们研究了Koenigs序列的共轭 - 正交性,其中一些具体的例子。我们使用这些结果表明,具有Schröder符号的复杂对称成分运算符的通勤者完全由复杂的对称操作员组成。

We investigate the relationship between the complex symmetry of composition operators $C_ϕf=f\circ ϕ$ induced on the classical Hardy space $H^2(\mathbb{D})$ by an analytic self-map $ϕ$ of the open unit disk $\mathbb{D}$ and its Koenigs eigenfunction. A generalization of orthogonality known as conjugate-orthogonality will play a key role in this work. We show that if $ϕ$ is a Schröder map (fixes a point $a\in \mathbb{D}$ with $0<|ϕ'(a)|<1$) and $σ$ is its Koenigs eigenfunction, then $C_ϕ$ is complex symmetric if and only if $(σ^n)_{n\in \mathbb{N}}$ is complete and conjugate-orthogonal in $H^2(\mathbb{D})$. We study the conjugate-orthogonality of Koenigs sequences with some concrete examples. We use these results to show that commutants of complex symmetric composition operators with Schröder symbols consist entirely of complex symmetric operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源