论文标题
CODIMENSION 2的同源不变2接触子序列
Homological invariants of codimension 2 contact submanifolds
论文作者
论文摘要
编成2触点子手机是对任意维度接触歧管的横向结的自然概括。在本文中,我们构建了Condimension 2的新不变式接触子手机。我们的主要不变性可以看作是环境流形的接触同源代数的变形。我们描述了这些不变性的各种应用以联系拓扑。特别是,我们展示了Conimension 2接触嵌入的示例,将其正式同位素且无法通过触点嵌入为同位素。我们还为某些相对符号和拉格朗日的恢复性提供了新的障碍。
Codimension 2 contact submanifolds are the natural generalization of transverse knots to contact manifolds of arbitrary dimension. In this paper, we construct new invariants of codimension 2 contact submanifolds. Our main invariant can be viewed as a deformation of the contact homology algebra of the ambient manifold. We describe various applications of these invariants to contact topology. In particular, we exhibit examples of codimension 2 contact embeddings into overtwisted and tight contact manifolds which are formally isotopic but fail to be isotopic through contact embeddings. We also give new obstructions to certain relative symplectic and Lagrangian cobordisms.