论文标题

随机复位抗病毒疗法可防止耐药性发展

Stochastic resetting antiviral therapies prevents drug resistance development

论文作者

Ramoso, Angelo Marco, Magalang, Juan Antonio, Sánchez-Taltavull, Daniel, Esguerra, Jose Perico, Roldán, Édgar

论文摘要

我们研究了病毒耐药性发展的最小平均场模型,其中通过一维随机复位过程描述了治疗的功效,并具有混合反射吸收边界条件。我们得出了病毒对药物完全抗性的平均存活时间的分析表达式。我们表明,达到最低和最大平均生存时间的最佳治疗重置率是第二阶和一阶相变的行为,这是治疗功效漂移的函数。我们通过模拟HIV-1感染的人群动力学模型来说明我们的结果。

We study minimal mean-field models of viral drug resistance development in which the efficacy of a therapy is described by a one-dimensional stochastic resetting process with mixed reflecting-absorbing boundary conditions. We derive analytical expressions for the mean survival time for the virus to develop complete resistance to the drug. We show that the optimal therapy resetting rates that achieve a minimum and maximum mean survival times undergo a second and first-order phase transition-like behaviour as a function of the therapy efficacy drift. We illustrate our results with simulations of a population-dynamics model of HIV-1 infection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源