论文标题
二进制中子星合并后的前10毫秒中的湍流磁场扩增:比较高分辨率和大型涡流模拟
Turbulent magnetic-field amplification in the first 10 milliseconds after a binary neutron star merger: comparing high-resolution and large eddy simulations
论文作者
论文摘要
二进制中子恒星合并的检测代表了近年来最重要,最复杂的天体物理发现之一。该问题的不清楚的一个方面之一是湍流磁场扩增,最初是由开尔文 - 霍尔姆·霍尔茨(Kelvin-Helmholtz)不稳定性触发的,比如今的任何可触及的数值分辨率要小得多。在这里,我们介绍了二进制中子星合并的前十毫秒的数值模拟。首先,我们详细介绍了模拟的放大如何取决于数值分辨率,并按照湍流MHD理论的预期在广泛的尺度上分布。我们发现,在$ 10^{16} \,$ 10^{16} \,$ g中,在第一个$ 5 $ 5 $毫秒内,每颗恒星内部的$ g $ 10^{11} \,每颗恒星内部的$ g的初始大规模磁场在第一个$ 10^{16} \,对于我们的最高分辨率运行。然后,我们运行大型涡流模拟,探索了在先前的湍流盒模拟中成功测试的亚网格级梯度模型的性能。我们表明,该模型的添加在感应方程中尤为重要,因为它会导致与高分辨率运行相当的磁场的放大,但计算成本大大降低。在前10毫秒内,对于有序的大规模磁场没有明确的提示,这确实应该通过磁绕组和磁性旋转不稳定在更长的时间尺度中发生。
The detection of binary neutron star mergers represents one of the most important and complex astrophysical discoveries of the recent years. One of the unclear aspects of the problem is the turbulent magnetic field amplification, initially triggered by the Kelvin-Helmholtz instability at much smaller scales than any reachable numerical resolution nowadays. Here we present numerical simulations of the first ten milliseconds of a binary neutron star merger. First, we confirm in detail how the simulated amplification depends on the numerical resolution and is distributed on a broad range of scales, as expected from turbulent MHD theory. We find that an initial large-scale magnetic field of $10^{11}\,$G inside each star is amplified in the remnant to root-mean-square values above $10^{16}\,$G within the first $5$ milliseconds for our highest-resolution run. Then, we run large eddy simulations, exploring the performance of the subgrid-scale gradient model, already tested successfully in previous turbulent box simulations. We show that the addition of this model is especially important in the induction equation, since it leads to an amplification of the magnetic field comparable to a higher-resolution run, but with a greatly reduced computational cost. In the first 10 milliseconds, there is no clear hint for an ordered, large-scale magnetic field, which should indeed occur in longer timescales through magnetic winding and the magneto-rotational instability.