论文标题
Lorentz组商的全能流动的新时间变化
New time-changes of unipotent flows on quotients of Lorentz groups
论文作者
论文摘要
我们研究了COCOCOCACT Lattices $γ\ so so(n,1)$,以便在$(n)\ backslash so(n)\ backslash so(n,1)/γ$上具有$(0,1/4)$的特征值,然后显示出$($)的$(n)$ notip-yous-yous-yous-nos-nos-nos-nos-nos-nos-nos-nos-nos-nos-nos-note note(n)\ backslash so(N)与不受干扰的人共轭。 证明的主要成分是补充系列的分支的更强版本。将其与Ratner和Flaminio-Forni的作品的完善相结合,足以满足我们的目的。
We study the cocompact lattices $Γ\subset SO(n,1)$ so that the Laplace-Beltrami operator $Δ$ on $SO(n)\backslash SO(n,1)/Γ$ has eigenvalues in $(0,1/4)$, and then show that there exist time-changes of unipotent flows on $SO(n,1)/Γ$ that are not measurably conjugate to the unperturbed ones. A main ingredient of the proof is a stronger version of the branching of the complementary series. Combining it with a refinement of the works of Ratner and Flaminio-Forni is adequate for our purpose.