论文标题

拓扑平坦波段中玻色粒分数量子厅效应的相变

Phase transitions of bosonic fractional quantum Hall effect in topological flat bands

论文作者

Zeng, Tian-Sheng

论文摘要

我们研究了在现场周期性潜力和哈伯德排斥相互作用下,在不同的拓扑晶格模型中,研究了玻色粒$ν= 1/2 $分数量子大厅(FQH)效应的相变。通过精确的对角度化和密度矩阵重新归一化组方法,我们证明了多体基态在玻色粒FQH液体与微不足道(MOTT)绝缘子之间的连续相变,其周期性潜在,其特征在于能量和范围的平滑交叉。当哈伯德排斥力降低时,我们声称这种玻色子FQH液体将变成一个直接能级交叉的超流体状态,并且不连续的长期远距离秩序不连续。

We study the phase transitions of bosonic $ν=1/2$ fractional quantum Hall (FQH) effect in different topological lattice models under the interplay of onsite periodic potential and Hubbard repulsion. Through exact diagonalization and density matrix renormalization group methods, we demonstrate that the many-body ground state undergoes a continuous phase transition between bosonic FQH liquid and a trivial (Mott) insulator induced by the periodic potential, characterized by the smooth crossover of energy and entanglement entropy. When the Hubbard repulsion decreases, we claim that this bosonic FQH liquid would turn into a superfluid state with direct energy level crossing and a discontinuous leap of off-diagonal long-range order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源