论文标题

由强磁结构耦合驱动的多功能反植物

Multifunctional Antiperovskites driven by Strong Magnetostructural Coupling

论文作者

Singh, Harish K., Samathrakis, Ilias, Fortunato, Nuno M., Zemen, Jan, Shen, Chen, Gutfleisch, Oliver, Zhang, Hongbin

论文摘要

基于密度函数理论计算,我们阐明了具有非共线磁接地态的立方体反蛋白酶的多功能性能的起源,这可以归因于强的各向同性和各向异性磁体结构偶联。在54个稳定的磁性抗磷灰石中,有16个M $ _3 $ XZ(M = Cr,Mn,Fe,Co和Ni; X =从Li到BI的选定元素,除了贵重的气体和4F稀有的金属;以及Z = C和N)以展示$γ_{4G {4G} $/$ umg/$γ_} $(IRRED)(IRRED)(IRRED)(IRRED)(IRRED)(IRRED)。由沮丧的交换耦合和较强的磁晶型各向异性驱动的抗铁磁磁构型。将磁化变形作为有效代理,表征了各向同性磁结构耦合,并且观察到,顺磁性状态对于了解实验观察到的负热膨胀并预测磁化性能至关重要。此外,研究了双轴菌株引起的压电和压电效应。据表明,施加的菌株在诱导的磁化和异常霍尔电导率之间没有很强的相关性。有趣的是,由于Weyl点能量的微调,可以通过施加的应变来显着定制异常的大厅/NERNST电导率,从而导致有希望的自旋应用。

Based on density functional theory calculations, we elucidated the origin of multifunctional properties for cubic antiperovskites with noncollinear magnetic ground states, which can be attributed to strong isotropic and anisotropic magnetostructural coupling. 16 out of 54 stable magnetic antiperovskites M$_3$XZ (M = Cr, Mn, Fe, Co, and Ni; X = selected elements from Li to Bi except for noble gases and 4f rare-earth metals; and Z = C and N) are found to exhibit the $Γ_{4g}$/$Γ_{5g}$ (i.e., characterized by irreducible representations) antiferromagnetic magnetic configurations driven by frustrated exchange coupling and strong magnetocrystalline anisotropy. Using the magnetic deformation as an effective proxy, the isotropic magnetostructural coupling is characterized, and it is observed that the paramagnetic state is critical to understand the experimentally observed negative thermal expansion and to predict the magnetocaloric performance. Moreover, the piezomagnetic and piezospintronic effects induced by biaxial strain are investigated. It is revealed that there is not a strong correlation between the induced magnetization and anomalous Hall conductivities by the imposed strain. Interestingly, the anomalous Hall/Nernst conductivities can be significantly tailored by the applied strain due to the fine-tuning of the Weyl points energies, leading to promising spintronic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源