论文标题

通过分配匹配来完全自我监督的人群计数

Completely Self-Supervised Crowd Counting via Distribution Matching

论文作者

Sam, Deepak Babu, Agarwalla, Abhinav, Joseph, Jimmy, Sindagi, Vishwanath A., Babu, R. Venkatesh, Patel, Vishal M.

论文摘要

密集的人群计数是一项具有挑战性的任务,需要数百万个培训模型的头注释。尽管现有的自我监督方法可以学习良好的表示形式,但它们需要一些标记的数据才能将这些功能映射到密度估计的最终任务。我们通过提议的完整自学范式来减轻此问题,即使是单个标记的图像也不需要。除了大量未标记的人群图像之外,唯一需要训练的输入是给定数据集的人群计数的大约上限。我们的方法涉及自然人群遵循权力法分配的想法,该想法可以利用,以产生错误信号以进行反向传播。首先,通过自学审计,通过优化两者之间的凹痕距离,将密度回归器首先介绍,然后将预测的分布与先前的距离相匹配。实验表明,这导致有效学习人群特征并提供大量计数性能。此外,我们在较小的数据设置中也建立了我们方法的优势。我们的方法的代码和模型可在https://github.com/val-iisc/css-ccnn上获得。

Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to map these features to the end task of density estimation. We mitigate this issue with the proposed paradigm of complete self-supervision, which does not need even a single labeled image. The only input required to train, apart from a large set of unlabeled crowd images, is the approximate upper limit of the crowd count for the given dataset. Our method dwells on the idea that natural crowds follow a power law distribution, which could be leveraged to yield error signals for backpropagation. A density regressor is first pretrained with self-supervision and then the distribution of predictions is matched to the prior by optimizing Sinkhorn distance between the two. Experiments show that this results in effective learning of crowd features and delivers significant counting performance. Furthermore, we establish the superiority of our method in less data setting as well. The code and models for our approach is available at https://github.com/val-iisc/css-ccnn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源