论文标题
定期晶格的弹性固体中波传播的晶格玻尔兹曼方法:理论分析和验证
Lattice Boltzmann Method for wave propagation in elastic solids with a regular lattice: Theoretical analysis and validation
论文作者
论文摘要
冯·诺伊曼(Von Neumann)稳定性分析以及Chapman-Enskog分析提出了使用常规D2Q9晶格的单张开时晶格Boltzmann方法(LBM)用于各向同性线性弹性固体的波传播。考虑了不同的边界条件:周期性,自由表面,刚性界面。提出了一种原始的吸收层模型,以防止域边界处的伪造波反射。考虑了几个测试案例,评估了本方法。首先,用ricker小波在时间上调节的空间高斯力被用作来源。比较与使用经典傅立叶光谱法获得的结果进行。 P和S波均显示出非常准确的预测。然后处理瑞利表面波的情况,以检查该方法的准确性。
The von Neumann stability analysis along with a Chapman-Enskog analysis is proposed for a single-relaxation-time lattice Boltzmann Method (LBM) for wave propagation in isotropic linear elastic solids, using a regular D2Q9 lattice. Different boundary conditions are considered: periodic, free surface, rigid interface. An original absorbing layer model is proposed to prevent spurious wave reflection at domain boundaries. The present method is assessed considering several test cases. First, a spatial Gaussian force modulated in time by a Ricker wavelet is used as a source. Comparisons are made with results obtained using a classical Fourier spectral method. Both P and S waves are shown to be very accurately predicted. The case of Rayleigh surface waves is then addressed to check the accuracy of the method.