论文标题
具有依赖参数的对数阻尼的波方程的渐近曲线
Asymptotic profiles for a wave equation with parameter dependent logarithmic damping
论文作者
论文摘要
与经常研究的强阻尼病例相比,我们研究具有对数阻尼的非局部波方程,该方程在低频区域较弱。我们在整个空间中考虑了该模型的库奇问题,并研究了解决方案的渐近概况和最佳估计,并且随着时间的流逝,在l^{2} - sense中的无穷大。在那种情况下,超几何功能的一些结果很有用。
We study a nonlocal wave equation with logarithmic damping which is rather weak in the low frequency zone as compared with frequently studied strong damping case. We consider the Cauchy problem for this model in the whole space and we study the asymptotic profile and optimal estimates of the solutions and the total energy as time goes to infinity in L^{2}-sense. In that case some results on hypergeometric functions are useful.