论文标题
子孔(变形)梯子操作员
Sub-bosonic (deformed) ladder operators
论文作者
论文摘要
规范运算符$ \ hat {a}^{\ dagger} $($ \ hat {a} $)代表添加(减去){\ it Exact}的能量$ e $ to to(从基本量子力学和量子场中的物理系统)的理想过程。这是一个``尖锐的''概念,因为在操作员级别上不可能发生$ e $的可变性。在这项工作中,我们介绍了一类变形的创造和歼灭操作员,该作品源自严格的模糊概念。这导致了变形的亚验证换向关系,诱导具有修改的特征力和FOCK状态的简单代数结构。此外,我们研究了量子场理论中引入的形式主义的可能后果,例如,自由quasiboson的分散关系中的线性偏差。
The canonical operator $\hat{a}^{\dagger}$ ($\hat{a}$) represents the ideal process of adding (subtracting) an {\it exact} amount of energy $E$ to (from) a physical system in both elementary quantum mechanics and quantum field theory. This is a ``sharp'' notion in the sense that no variability around $E$ is possible at the operator level. In this work, we present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness. This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states. In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.