论文标题

W-NUT 2020任务2:基于BERT的系统,用于识别信息丰富的COVID-19英语推文,

Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying Informative COVID-19 English Tweets

论文作者

Hoang, Thai Quoc, Vu, Phuong Thu

论文摘要

截至2020年,当COVID-19大流行在全球范围内成熟时,人们需要获得有关Covid-19的合法信息的需求,这比以往任何时候都更加紧迫,尤其是通过在线媒体中,大量无关的信息掩盖了更多信息信息。为此,我们提出了一个模型,鉴于英文推文,该模型会自动识别该推文是否具有有关COVID-19的信息内容。通过结合不同的Bertweet模型配置,我们取得了竞争成果,而竞争成果仅与最高表现的球队相比,在内容丰富的课程中,F1得分大约是1%。在竞争后期,我们还尝试了其他各种可能提高对新数据集的概括的方法。

As of 2020 when the COVID-19 pandemic is full-blown on a global scale, people's need to have access to legitimate information regarding COVID-19 is more urgent than ever, especially via online media where the abundance of irrelevant information overshadows the more informative ones. In response to such, we proposed a model that, given an English tweet, automatically identifies whether that tweet bears informative content regarding COVID-19 or not. By ensembling different BERTweet model configurations, we have achieved competitive results that are only shy of those by top performing teams by roughly 1% in terms of F1 score on the informative class. In the post-competition period, we have also experimented with various other approaches that potentially boost generalization to a new dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源