论文标题

在室温下对局部激子的辐射控制,并具有超级尖端增强的等离子纳米腔体

Radiative control of localized excitons at room temperature with an ultracompact tip-enhanced plasmonic nano-cavity

论文作者

Lee, Hyeongwoo, Kim, Inki, Park, Chulho, Kang, Mingu, Mun, Jungho, Kim, Yeseul, Raschke, Markus B., Jeong, Mun Seok, Rho, Junsuk, Park, Kyoung-Duck

论文摘要

在原子较薄的半导体中,与灯光相连的局部激子(x $ _l $)通过辐射放松过程显示了单个量子发射行为,从而为量子通信中的潜在应用提供了新的光学源。然而,在大多数研究中,由于其亚波长发射区域和室温下的低量子产率,主要在低温条件下观察到了晶体缺陷的X $ _l $光致发光(PL)。此外,工程辐射放松特性,例如发射区域,强度和能量,仍然具有挑战性。在这里,我们提出了一个带有三个尖端的几何形状的等离子体天线,以在室温下诱导和控制WSE $ _2 $单层(ML)的X $ _l $发射。通过将ML晶体放在通过cascade Domino光刻制造的Bowtie天线中的两个尖锐的AU尖端,曲率<1 nm的半径<1 nm,我们有效地在纳米级区域诱导了拉伸菌株,以创建强大的x $ _l $状态。然后将具有尖端增强光发光(TEPL)光谱的AU尖端添加到应变区域中,以探测和控制X $ _L $发射。随着TEPL增强X $ _l $的高度高达〜10 $^6 $在三个sharp-tips设备中,实验结果表明,可控的x $ _l $在<30 nm区域中可控的x $ _l $排放,PL能量转移至40 MEV,最高为40 MEV,可通过尖端增强的PL和Raman成像,并具有<15 nm的空间空间分辨率。我们的方法提供了一种系统的方法来控制2D半导体中的局部量子光,从而为主动量子纳米光学设备提供了新的策略。

In atomically thin semiconductors, localized exciton (X$_L$) coupled to light shows single quantum emitting behaviors through radiative relaxation processes providing a new class of optical sources for potential applications in quantum communication. In most studies, however, X$_L$ photoluminescence (PL) from crystal defects has mainly been observed in cryogenic conditions because of their sub-wavelength emission region and low quantum yield at room temperature. Furthermore, engineering the radiative relaxation properties, e.g., emission region, intensity, and energy, remained challenging. Here, we present a plasmonic antenna with a triple-sharp-tips geometry to induce and control the X$_L$ emission of a WSe$_2$ monolayer (ML) at room temperature. By placing a ML crystal on the two sharp Au tips in a bowtie antenna fabricated through cascade domino lithography with a radius of curvature of <1 nm, we effectively induce tensile strain in the nanoscale region to create robust X$_L$ states. An Au tip with tip-enhanced photoluminescence (TEPL) spectroscopy is then added to the strained region to probe and control the X$_L$ emission. With TEPL enhancement of X$_L$ as high as ~10$^6$ in the triple-sharp-tips device, experimental results demonstrate the controllable X$_L$ emission in <30 nm area with a PL energy shift up to 40 meV, resolved by tip-enhanced PL and Raman imaging with <15 nm spatial resolution. Our approach provides a systematic way to control localized quantum light in 2D semiconductors offering new strategies for active quantum nano-optical devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源