论文标题
在不确定性下测量复杂网络的拓扑描述源
Measuring topological descriptors of complex networks under uncertainty
论文作者
论文摘要
从观察到的集体动力学中揭示复杂系统的结构特征是网络科学中的一个基本问题。为了计算通常用于表征复杂系统结构的各种拓扑描述符(例如,群集系数),通常有必要完全重建子系统之间的关系网络。可以使用几种方法来检测网络节点之间的相互作用。通过观察一些物理数量,可以使用各种区分统计数据(例如相关,互信息等)推断结构关系。在这种情况下,关于边缘存在的不确定性反映在拓扑描述符的不确定性中。在这项研究中,我们提出了一个新颖的方法学框架来评估这种不确定性,即使在单个节点的水平上,替代了拓扑描述符,并具有适当的概率分布,从而避免了重建阶段。我们的理论框架与在一系列合成和现实世界网络上执行的数值实验一致。我们的结果为分析和解释广泛使用的拓扑描述符提供了基础框架,例如学位中心性,聚类和集群,在网络连接的存在统计上是统计上推断出或存在$π_{ij} $的情况的情况下。为此,我们还提供了一个简单且数学上的过程,将区分统计信息转换为概率$π_{ij} $。
Revealing the structural features of a complex system from the observed collective dynamics is a fundamental problem in network science. In order to compute the various topological descriptors commonly used to characterize the structure of a complex system (e.g. the degree, the clustering coefficient), it is usually necessary to completely reconstruct the network of relations between the subsystems. Several methods are available to detect the existence of interactions between the nodes of a network. By observing some physical quantities through time, the structural relationships are inferred using various discriminating statistics (e.g. correlations, mutual information, etc.). In this setting, the uncertainty about the existence of the edges is reflected in the uncertainty about the topological descriptors. In this study, we propose a novel methodological framework to evaluate this uncertainty, replacing the topological descriptors, even at the level of a single node, with appropriate probability distributions, eluding the reconstruction phase. Our theoretical framework agrees with the numerical experiments performed on a large set of synthetic and real-world networks. Our results provide a grounded framework for the analysis and the interpretation of widely used topological descriptors, such as degree centrality, clustering and clusters, in scenarios where the existence of network connectivity is statistically inferred or when the probabilities of existence $π_{ij}$ of the edges are known. To this purpose we also provide a simple and mathematically grounded process to transform the discriminating statistics into the probabilities $π_{ij}$ .