论文标题
对称限制及其对重力的应用
Symmetry restriction and its application to gravity
论文作者
论文摘要
在哈密顿公式中,尚不清楚对称配置是否会在进化过程中保持对称性。在本文中,我们给出了何时发生这种情况的精确要求,并提出对称变量相位空间的对称限制。这通常可以缓解计算,尤其是当从野外理论的无限尺寸相位到可能有限的维尺寸子空间时。在重力的情况下,我们将证明这一点。一个突出的例子是限制了哈密顿的一般相对论对罗伯逊 - 步行者类型的宇宙构型的限制。我们将在这种情况下演示我们的程序,并将其扩展到示例,这些示例在某些量子重力的方法中似乎有用。
In the Hamiltonian formulation, it is not a priori clear whether a symmetric configuration will keep its symmetry during evolution. In this paper, we give precise requirements of when this is the case and propose a symmetry restriction to the phase space of the symmetric variables. This can often ease computation, especially when transcending from the infinite dimensional phase space of a field theory to a possibly finite dimensional subspace. We will demonstrate this in the case of gravity. A prominent example is the restriction of full Hamiltonian general relativity to the cosmological configurations of Robertson-Walker type. We will demonstrate our procedure in this setting and extend it to examples which appear useful in certain approaches to quantum gravity.