论文标题
连接低尺度的SEESAW中微子质量与Abelian仪表对称性的非弹性子GEV暗物质
Connecting Low scale Seesaw for Neutrino Mass to Inelastic sub-GeV Dark Matter with Abelian Gauge Symmetry
论文作者
论文摘要
由最近报道的Xenon1T实验过多的电子后坐力事件的激励,我们建议在$(1)_X _x $量表扩展标准模型的低尺度SEESAW方案,以预测稳定以及长期存在的黑暗扇形颗粒。 Seesaw实现所需的新字段以及暗物质以$ u(1)_x $ g仪表对称性为单位。一个有效产生Lepton数量违规的单线标量场,因此在树或辐射水平上的Majorana光中微子质量也将暗物质领域分为两个准脱位状态。虽然Sub-EV中微子质量和非零暗物质质量分裂是相关的,但如果质量分裂为KEV量表,则亚GEV量表非弹性暗物质的现象学可能非常丰富。我们表明,对于合适的参数空间,两个具有KEV拆分的组件都可以促进当前宇宙的总暗物质密度,同时又开放了更重的暗物质候选者与电子进行散落的可能性。我们检查了Fermion和标量非弹性暗物质候选模型的参数空间,这些候选物可能会导致Xenon1t过量,同时与其他现象学界限一致。我们还讨论了一般情况,在两个暗物质组件之间质量分配〜$δm$可能会更大,从而有效地产生了单个成分的暗物质方案。
Motivated by the recently reported excess of electron recoil events by the XENON1T experiment, we propose low scale seesaw scenarios for light neutrino masses within $U(1)_X$ gauge extension of the standard model that also predicts stable as well as long lived dark sector particles. The new fields necessary for seesaw realisation as well as dark matter are charged under the $U(1)_X$ gauge symmetry in an anomaly free way. A singlet scalar field which effectively gives rise to lepton number violation and hence Majorana light neutrino masses either at tree or radiative level, also splits the dark matter field into two quasi-degenerate states. While sub-eV neutrino mass and non-zero dark matter mass splitting are related in this way, the phenomenology of sub-GeV scale inelastic dark matter can be very rich if the mass splitting is of keV scale. We show that for suitable parameter space, both the components with keV splitting can contribute to total dark matter density of the present universe, while opening up the possibility of the heavier dark matter candidate to undergo down-scattering with electrons. We check the parameter space of the model for both fermion and scalar inelastic dark matter candidates which can give rise to the XENON1T excess while being consistent with other phenomenological bounds. We also discuss the general scenario where mass splitting~$Δm$ between the two dark matter components can be larger, effectively giving rise to a single component dark matter scenario.