论文标题
SAPAG:梯度的自适应隐私攻击
SAPAG: A Self-Adaptive Privacy Attack From Gradients
论文作者
论文摘要
分布式学习(例如联合学习或协作学习)可以从用户对分散数据进行模型培训,并且仅收集本地梯度,在该梯度上,数据被附近处理的数据来源以供数据隐私。不集中培训数据的性质解决了对隐私敏感数据的隐私问题。最近的研究表明,第三方可以通过公开共享的梯度重建分布式机器学习系统中的真实培训数据。但是,现有的重建攻击框架缺乏对不同深层神经网络(DNN)架构和不同重量分布初始化的普遍性,并且只能在早期培训阶段取得成功。为了解决这些限制,在本文中,我们提出了梯度Sapag的更一般的隐私攻击,该梯度使用基于梯度差的高斯内核作为距离度量。我们的实验表明,SAPAG可以在任何训练阶段的重量初始化和DNN上构建不同DNN的训练数据。
Distributed learning such as federated learning or collaborative learning enables model training on decentralized data from users and only collects local gradients, where data is processed close to its sources for data privacy. The nature of not centralizing the training data addresses the privacy issue of privacy-sensitive data. Recent studies show that a third party can reconstruct the true training data in the distributed machine learning system through the publicly-shared gradients. However, existing reconstruction attack frameworks lack generalizability on different Deep Neural Network (DNN) architectures and different weight distribution initialization, and can only succeed in the early training phase. To address these limitations, in this paper, we propose a more general privacy attack from gradient, SAPAG, which uses a Gaussian kernel based of gradient difference as a distance measure. Our experiments demonstrate that SAPAG can construct the training data on different DNNs with different weight initializations and on DNNs in any training phases.