论文标题
用于联合学习的原则数据评估方法
A Principled Approach to Data Valuation for Federated Learning
论文作者
论文摘要
联合学习(FL)是训练机器学习(ML)模型的流行技术,该技术是分散数据源的。为了维持数据所有者的长期参与,重要的是要公平评估每个数据源并补偿数据所有者对培训过程的贡献。 Shapley值(SV)定义了一个独特的回报方案,该方案满足了数据值概念的许多欲望。它越来越多地用于评估集中学习中的培训数据。但是,计算SV需要详尽地评估数据源的每个子集上的模型性能,这会在联合环境中产生过分的通信成本。此外,规范的SV忽略了训练过程中数据源的顺序,这与FL的顺序性质相抵触。本文提出了SV的一种变体,可将其称为FL,我们称之为联邦Shapley值。联合SV保留了规范SV的理想属性,同时可以在不产生额外的沟通成本的情况下进行计算,并且还能够捕获参与顺序对数据值的影响。我们对联合SV进行了一系列任务的彻底实证研究,包括嘈杂的标签检测,对抗性参与者检测以及对不同基准数据集的数据汇总,并证明它可以反映FL的数据源的实际实用性,并且具有提高系统鲁棒性,安全性,安全性和效率的潜力。我们还报告和分析“失败案例”,并希望刺激未来的研究。
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources. In order to sustain long-term participation of data owners, it is important to fairly appraise each data source and compensate data owners for their contribution to the training process. The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion. It has been increasingly used for valuing training data in centralized learning. However, computing the SV requires exhaustively evaluating the model performance on every subset of data sources, which incurs prohibitive communication cost in the federated setting. Besides, the canonical SV ignores the order of data sources during training, which conflicts with the sequential nature of FL. This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value. The federated SV preserves the desirable properties of the canonical SV while it can be calculated without incurring extra communication cost and is also able to capture the effect of participation order on data value. We conduct a thorough empirical study of the federated SV on a range of tasks, including noisy label detection, adversarial participant detection, and data summarization on different benchmark datasets, and demonstrate that it can reflect the real utility of data sources for FL and has the potential to enhance system robustness, security, and efficiency. We also report and analyze "failure cases" and hope to stimulate future research.