论文标题
光学机械系统中的拓扑声子传输
Topological phonon transport in an optomechanical system
论文作者
论文摘要
现在,空腔 - 奥科学的最新进展使得不仅可以将光作为机械运动的被动测量手段,而且还可以操纵机械对象的运动至单个振动(Phonons)的水平。同时,微分化技术使能够在机械和光学信号的片上操纵的小型光学电路。理论上的提案在这些发展的基础上表明,较大规模的光学阵列可用于修改声子的传播,从而实现了一种拓扑受保护的声子传输的形式。在这里,我们报告了多尺度光学晶体结构中拓扑声子传输的观察,该结构由$ 800 $ $ 800 $的腔体机械元素组成。使用敏感的,空间分辨的光学读数,我们在$ 0.325-0.34 $ GHz频段沿拓扑边缘通道中检测到热声子,大幅降低了反向散射。这是从开创性的宏观机械系统朝着纳米级的拓扑音调系统工作的重要步骤,在该系统中,高超音速频率($ \ gtrsim $ ghz)的声波电路可以实现由可靠的延迟线和非互动元件组成的声波电路。由于拓扑通道的宽带特征,也可以预见,尽管在低温温度下,对热携带声子的流动的控制也可以预见。
Recent advances in cavity-optomechanics have now made it possible to use light not just as a passive measuring device of mechanical motion, but also to manipulate the motion of mechanical objects down to the level of individual quanta of vibrations (phonons). At the same time, microfabrication techniques have enabled small-scale optomechanical circuits capable of on-chip manipulation of mechanical and optical signals. Building on these developments, theoretical proposals have shown that larger scale optomechanical arrays can be used to modify the propagation of phonons, realizing a form of topologically protected phonon transport. Here, we report the observation of topological phonon transport within a multiscale optomechanical crystal structure consisting of an array of over $800$ cavity-optomechanical elements. Using sensitive, spatially resolved optical read-out we detect thermal phonons in a $0.325-0.34$GHz band traveling along a topological edge channel, with substantial reduction in backscattering. This represents an important step from the pioneering macroscopic mechanical systems work towards topological phononic systems at the nanoscale, where hypersonic frequency ($\gtrsim$GHz) acoustic wave circuits consisting of robust delay lines and non-reciprocal elements may be implemented. Owing to the broadband character of the topological channels, the control of the flow of heat-carrying phonons, albeit at cryogenic temperatures, may also be envisioned.