论文标题

从膨胀的墓穴中提取内部非局部性

Extracting the internal nonlocality from the dilated Hermiticity

论文作者

Huang, Minyi, Lee, Ray-Kuang, Wu, Junde

论文摘要

为了有效地实现$ \ cal pt $ - 符合系统,可以将$ \ cal pt $ -smmetric的汉密尔顿人扩张到某个全球遗传学上,并模拟其在扩张的Hermitian系统中的演变。但是,只有全球遗产汉密尔顿人,我们怎么知道这是否是扩张且对模拟很有用?为了回答这个问题,我们考虑了如何在遗传学扩张中提取内部非局部性的问题。我们揭示了内部非局部性会在子系统之间带来非平凡的相关性。通过评估三个不同图片中与局部测量的相关性,对钟形操作员的产生不同的期望揭示了内部非局部性的区别。当模拟的$ \ cal pt $ - 对称性汉密尔顿接近其特殊点时,这种区别往往是最重要的。我们的结果显然在没有内部非局部性的情况下,在Hermitian扩张和其他全球汉密尔顿人之间有所不同。他们还提供了值的图形来测试模拟的可靠性,并验证了$ \ cal pt $ -smmetric(sub)系统。

To effectively realize a $\cal PT$-symmetric system, one can dilate a $\cal PT$-symmetric Hamiltonian to some global Hermitian one and simulate its evolution in the dilated Hermitian system. However, with only a global Hermitian Hamiltonian, how do we know whether it is a dilation and is useful for simulation? To answer this question, we consider the problem of how to extract the internal nonlocality in the Hermitian dilation. We unveil that the internal nonlocality brings nontrivial correlations between the subsystems. By evaluating the correlations with local measurements in three different pictures, the resulting different expectations of the Bell operator reveal the distinction of the internal nonlocality. When the simulated $\cal PT$-symmetric Hamiltonian approaches its exceptional point, such a distinction tends to be most significant. Our results clearly make a difference between the Hermitian dilation and other global Hamiltonians without internal nonlocality. They also provide the figure of merit to test the reliability of the simulation, as well as to verify a $\cal PT$-symmetric (sub)system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源