论文标题
统计查询算法和低度测试几乎是等效的
Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
论文作者
论文摘要
目前,研究人员使用多种方法来预测和证实高维统计估计问题中的信息计算差距。一种突出的方法是表征受限模型的限制,一方面,该模型可为强大的算法类别提供强大的计算下限,另一方面,另一方面有助于指导有效的算法的发展。在本文中,我们研究了两个最受欢迎的限制计算模型,即统计查询框架和低级多项式,在高维假设测试的背景下。我们的主要结果是,在测试问题的轻度条件下,两类算法基本上是等效的。作为推论,我们获得了稀疏PCA,张量PCA和几种种植集团问题的新统计查询下限。
Researchers currently use a number of approaches to predict and substantiate information-computation gaps in high-dimensional statistical estimation problems. A prominent approach is to characterize the limits of restricted models of computation, which on the one hand yields strong computational lower bounds for powerful classes of algorithms and on the other hand helps guide the development of efficient algorithms. In this paper, we study two of the most popular restricted computational models, the statistical query framework and low-degree polynomials, in the context of high-dimensional hypothesis testing. Our main result is that under mild conditions on the testing problem, the two classes of algorithms are essentially equivalent in power. As corollaries, we obtain new statistical query lower bounds for sparse PCA, tensor PCA and several variants of the planted clique problem.