论文标题
将磁状态映射为SM $ _ {2} $ nimno $ _ {6} $ double Perovskite薄膜的磁状态的函数
Mapping the magnetic state as a function of anti-site disorder in Sm$ _{2} $NiMnO$ _{6} $ double perovskite thin films
论文作者
论文摘要
双重钙钛矿系统中任何特征功能方面的可预测性始终受到其对不可避免的抗位点疾病(ASD)的强烈依赖性的损害。在这里,我们的目标是精确地绘制ASD的定量和定性性质,并在观测值中进行相应的修改,描述了外在sm $ _ {2} $ nimno $ _ {6} $(snmo)双perovskite perovskite薄膜中的磁性和电子状态。 ASD的浓度和分布模式通过优化生长条件进行有效控制,并利用扩展的X射线吸收细胞和块状磁力测定法对局部和全局尺度进行估计。根据缺陷密度,疾病分布的性质可能从均匀到部分隔离的斑块变化。首先,SNMO中不同的B位阳离子排列的效果反映为远程铁磁(FM)和短尺度的抗铁磁性(AFM)相互作用的竞争源自有序的NI-O-MN和无序的NI-O-O-NI或MN-O-NI或MN-O-MN键,从而导致了系统的变化,从而导致了系统的变化和促销速度的限制。此外,我们已经观察到,ASD密度的逐渐增长导致与单轴各向异性特征,各向异性能量的降低以及矩固定效率的增强。但是,发现$ ni^{2+}+mn^{4+} \ longrightArrow ni^{3+}+mn^{3+} $的签名被发现与阳离子障碍密度无关。这项工作是通过在一般的双钙岩系统中控制ASD来调整特征磁各向异性,磁相变和磁化反转机制的基本路线图。
The predictability of any characteristic functional aspect in a double perovskite system has always been compromised by its strong dependence over the inevitably present anti-site disorders (ASD). Here, we aim to precisely map the quantitative and qualitative nature of ASD with the corresponding modifications in observables describing the magnetic and electronic state in epitaxial Sm$ _{2} $NiMnO$ _{6} $ (SNMO) double perovskite thin films. The concentration and distribution patterns of ASD are effectively controlled by optimizing growth conditions and estimated on both local and global scales utilizing extended X-ray absorption fine structure and bulk magnetometry. Depending upon the defect densities, the nature of disorder distribution can vary from homogeneous to partially segregated patches. Primarily, the effect of varying B-site cationic arrangement in SNMO is reflected as the competition of long range ferromagnetic (FM) and short scale antiferromagnetic (AFM) interactions originated from ordered Ni-O-Mn and disordered Ni-O-Ni or Mn-O-Mn bonds, respectively, which leads to systematic shift in magnetic transition temperature and drastic drop in saturation magnetization. In addition, we have observed that the gradual increment in density of ASD leads to significant deviation from uniaxial anisotropy character, reduction in anisotropy energy and enhancement of moment pinning efficiency. However, the observed signatures of $ Ni^{2+}+Mn^{4+} \longrightarrow Ni^{3+}+Mn^{3+} $ charge disproportionation is found to be independent of cation disorder densities. This work serves as a basic route-map to tune the characteristic magnetic anisotropy, magnetic phase transitions, and magnetization reversal mechanism by controlling ASD in a general double perovskite system.