论文标题
无红Q指数以识别成为明星候选人
Reddening-free Q indices to identify Be star candidates
论文作者
论文摘要
天文数据库当前提供大量光谱和光度数据。尽管光谱数据更适合分析许多天文对象,但由于望远镜使用时间较短,光度数据相对容易获得。因此,越来越需要使用光度信息来自动识别对象进行进一步详细的研究,特别是Hα发射线星,例如BE恒星。光度颜色图(CCD)通常用于识别这种对象。然而,由于偶发性和星际气体引起的红色效果,它们在CCD中的识别更加复杂。这种效果阻止了候选识别系统的概括。因此,在这项工作中,我们评估了神经网络的使用来确定一组ob型恒星的恒星候选者。使用过滤器u,g,r,hα,i,j,h和k对网络进行培训。为了避免使用红色的效果,我们提出并评估了对其他数据库和对象的模型的通用化。为了测试方法的有效性,我们手动标记了数据库的子集,并使用它来评估候选识别模型。我们还标记了一个独立的数据集用于交叉数据集评估。我们在两个测试组上以99%的精度水平评估模型的召回。我们的结果表明,所提出的功能比原始滤光片幅度可显着改善。
Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially Hα emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, Hα, i, J, H, and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.