论文标题
热电学的可逆相互关系
Reversible Reciprocal Relation of Thermoelectricity
论文作者
论文摘要
指出毛发系数的第一个开尔文关系应等于温度和Seebeck系数的乘积,这是热电学的基本原理。它被认为是对Onsager相互关系(ORR)的重要应用和直接实验验证,这是不可逆热力学的基石。但是,仍然存在一些关键问题:为什么开尔文的证据省略了热电运输过程中所有不可逆性的证明,可以达到正确的结果,如何正确选择从ORR得出第一个开尔文关系的广义 - 弗拉克式配对,以及第一个Kelvin关系是否受线性运输条件的要求是否受到限制。目前的工作是根据基本的热力学原理回答这些问题。由于热电效应是可逆的,因此我们可以使用可逆过程中的数量重新定义Seebeck和Peltier系数,而无需涉及时间衍生物,它们被更名为“可逆的Seebeck和Peltier系数”。它们之间的关系(称为“热电学的可逆相互关系”)是从麦克斯韦关系得出的,当采用局部平衡假设(LEA)时,可以将其减少到常规的开尔文关系。从这个意义上讲,第一个开尔文关系的有效性是由可逆的热力学原理和LEA保证的,而无需线性传输过程。此外,只有当它们与麦克斯韦关系的共轭变量对相对应时,从数学和热力学上获得了从数学和热力学上获得第一个开尔文关系的广义力 - 频率对才能在数学上和热力学上都是正确的。目前的理论框架可以进一步扩展到其他耦合现象。
The first Kelvin relation that states the Peltier coefficient should be equal to the product of temperature and Seebeck coefficient is a fundamental principle in thermoelectricity. It has been regarded as an important application and direct experimental verification of Onsager reciprocal relation (ORR) that is a cornerstone of irreversible thermodynamics. However, some critical questions still remain: why Kelvin's proof that omits all irreversibility within a thermoelectric transport process can reach the correct result, how to properly select the generalized-force-flux pairs for deriving the first Kelvin relation from ORR, and whether the first Kelvin relation is restricted by the requirement of linear transport regime. The present work is to answer these questions based on the fundamental thermodynamic principles. Since the thermoelectric effects are reversible, we can redefine the Seebeck and Peltier coefficients using the quantities in reversible processes with no time derivative involved, which are renamed as "reversible Seebeck and Peltier coefficients". The relation between them (called "the reversible reciprocal relation of thermoelectricity") is derived from the Maxwell relations, which can be reduced to the conventional Kelvin relation, when the local equilibrium assumption (LEA) is adopted. In this sense, the validity of the first Kelvin relation is guaranteed by the reversible thermodynamic principles and LEA, without the requirement of linear transport process. Additionally, the generalized force-flux pairs to obtain the first Kelvin relation from ORR can be proper both mathematically and thermodynamically, only when they correspond to the conjugate-variable pairs of which Maxwell relations can yield the reversible reciprocal relation. The present theoretical framework can be further extended to other coupled phenomena.