论文标题
面剂的倒数映射
Inverse mapping of face GANs
论文作者
论文摘要
生成对抗网络(GAN)从随机潜在向量合成逼真的图像。尽管许多研究都探索了gan的各种训练配置和体系结构,但颠倒生成模型以提取给定输入图像的潜在向量的问题已经不足。尽管每个给定的随机向量完全存在一个生成的图像,但是从图像到其恢复的潜在向量的映射可以具有多个解决方案。我们训练重新系统架构,以恢复给定面孔的潜在矢量,该镜头可用于产生与目标几乎相同的脸部。我们使用感知损失将面部细节嵌入回收的潜在矢量中,同时使用像素损失保持视觉质量。关于潜在矢量恢复的绝大多数研究仅在生成的图像上表现良好,我们认为我们的方法可用于确定真正的人脸和包含大多数重要面部样式细节的潜在空间矢量之间的映射。此外,我们提出的方法项目以高保真和速度为其潜在空间产生了面孔。最后,我们在真实的面孔和生成的面孔上展示了方法的性能。
Generative adversarial networks (GANs) synthesize realistic images from a random latent vector. While many studies have explored various training configurations and architectures for GANs, the problem of inverting a generative model to extract latent vectors of given input images has been inadequately investigated. Although there is exactly one generated image per given random vector, the mapping from an image to its recovered latent vector can have more than one solution. We train a ResNet architecture to recover a latent vector for a given face that can be used to generate a face nearly identical to the target. We use a perceptual loss to embed face details in the recovered latent vector while maintaining visual quality using a pixel loss. The vast majority of studies on latent vector recovery perform well only on generated images, we argue that our method can be used to determine a mapping between real human faces and latent-space vectors that contain most of the important face style details. In addition, our proposed method projects generated faces to their latent-space with high fidelity and speed. At last, we demonstrate the performance of our approach on both real and generated faces.