论文标题
时空功能神经网络
Spatio-Temporal Functional Neural Networks
论文作者
论文摘要
时空数据及其广泛应用的爆炸性增长吸引了研究人员在统计和机器学习领域的兴趣。从方法论开发和现实世界应用的角度来看,时空回归问题至关重要。鉴于观察到的空间编码时间序列协变量和实值响应数据样本,时空回归的目的是利用时间和空间依赖性来构建从协变量到响应的映射到最小化的预测误差。先前的艺术,包括卷积长的短期记忆(COVLSTM)和功能线性模型的变化,无法以简单有效的格式以适当的模型构建学习时空信息。在这项工作中,我们提出了功能神经网络(FNN)的两个新型扩展,这是一个时间回归模型,其有效性和优于替代顺序模型的表现已被许多研究人员证明。在全面的模拟研究中,证明了所提出的时空FNN在处理不同的空间相关性中的有效性。然后将提出的模型部署以解决气象领域中实用且具有挑战性的降水预测问题。
Explosive growth in spatio-temporal data and its wide range of applications have attracted increasing interests of researchers in the statistical and machine learning fields. The spatio-temporal regression problem is of paramount importance from both the methodology development and real-world application perspectives. Given the observed spatially encoded time series covariates and real-valued response data samples, the goal of spatio-temporal regression is to leverage the temporal and spatial dependencies to build a mapping from covariates to response with minimized prediction error. Prior arts, including the convolutional Long Short-Term Memory (CovLSTM) and variations of the functional linear models, cannot learn the spatio-temporal information in a simple and efficient format for proper model building. In this work, we propose two novel extensions of the Functional Neural Network (FNN), a temporal regression model whose effectiveness and superior performance over alternative sequential models have been proven by many researchers. The effectiveness of the proposed spatio-temporal FNNs in handling varying spatial correlations is demonstrated in comprehensive simulation studies. The proposed models are then deployed to solve a practical and challenging precipitation prediction problem in the meteorology field.