论文标题
扫描透射电子显微镜中时间和空间变形的识别和校正
Identification and Correction of Temporal and Spatial Distortions in Scanning Transmission Electron Microscopy
论文作者
论文摘要
扫描透射电子显微镜(Stem)已成为原子结构定量表征材料的选择技术,在该技术中,可以使用高对称位置的原子柱的微小位移来绘制绘制应变,极化,八面的倾斜度,以及其他物理和化学顺序参数。后者可以用作介观和原子模型的输入,从而洞悉原子水平上材料的相关关系和生成物理。但是,这些定量应用的茎需要了解显微镜引起的图像扭曲并开发途径以补偿它们,这两者都是原位成像的快速校准程序的一部分,以及实验后的数据分析阶段。在这里,我们使用图像堆栈中原子轨迹的多变量分析探索了茎中微观扭曲的时空结构。基于主成分分析(PCA)的行为,我们开发了基于高斯工艺(GP)的回归方法,用于定量失真函数。讨论了这种方法和实施策略的局限性,作为STEM中串联数据获取的一部分。分析工作流程在Jupyter笔记本中总结了,该笔记本可用于重新进行分析并分析读者的数据。
Scanning transmission electron microscopy (STEM) has become the technique of choice for quantitative characterization of atomic structure of materials, where the minute displacements of atomic columns from high-symmetry positions can be used to map strain, polarization, octahedra tilts, and other physical and chemical order parameter fields. The latter can be used as inputs into mesoscopic and atomistic models, providing insight into the correlative relationships and generative physics of materials on the atomic level. However, these quantitative applications of STEM necessitate understanding the microscope induced image distortions and developing the pathways to compensate them both as part of a rapid calibration procedure for in situ imaging, and the post-experimental data analysis stage. Here, we explore the spatiotemporal structure of the microscopic distortions in STEM using multivariate analysis of the atomic trajectories in the image stacks. Based on the behavior of principal component analysis (PCA), we develop the Gaussian process (GP)-based regression method for quantification of the distortion function. The limitations of such an approach and possible strategies for implementation as a part of in-line data acquisition in STEM are discussed. The analysis workflow is summarized in a Jupyter notebook that can be used to retrace the analysis and analyze the reader's data.