论文标题
积极的几何形状,局部三角形和Amplituhedron的双重
Positive geometry, local triangulations, and the dual of the Amplituhedron
论文作者
论文摘要
我们启动了\ emph {局部正空间}的系统研究,该研究是在amplituhedron构造的背景下出现的,用于在平面最大超对称的阳米尔斯理论中散射幅度。我们表明,与一环MHV振幅相关的所有局部正空间均具有某些标志条件的特征,并且与令人惊讶的简单对数形式有关。在最大签名案例中,它们是有限的一环八块。特定的标志挡空间组合可以粘贴到新的局部正几何形状中。这些对应于MHV一环振幅的局部扩展中出现的局部五角大成。我们表明,从几何学上讲,这些五角大族做\ emph {not}三角形绘制了原始的Amplituhedron空间,而是其双胞胎“ Amplituhedron-Prime”。这种新的几何形状具有与Amplituhedron相同的边界结构(因此具有相同的对数形式),但在散装中的几何空间不同。在某些二维边界上,Amplituhedron几何形状还原为多边形,我们检查两个空间是否映射到同一双重分类。有趣的是,我们发现五边形在内部三角剖分了双重空间。这有直接的证据表明,手性五角大族是尚未发现的双重扩增子的天然基础。
We initiate the systematic study of \emph{local positive spaces} which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces relevant for one-loop MHV amplitudes are characterized by certain sign-flip conditions and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip case they are finite one-loop octagons. Particular combinations of sign-flip spaces can be glued into new local positive geometries. These correspond to local pentagon integrands that appear in the local expansion of the MHV one-loop amplitude. We show that, geometrically, these pentagons do \emph{not} triangulate the original Amplituhedron space but rather its twin "Amplituhedron-Prime." This new geometry has the same boundary structure as the Amplituhedron (and therefore the same logarithmic form) but differs in the bulk as a geometric space. On certain two-dimensional boundaries, where the Amplituhedron geometry reduces to a polygon, we check that both spaces map to the same dual polygon. Interestingly, we find that the pentagons internally triangulate that dual space. This gives a direct evidence that the chiral pentagons are natural building blocks for a yet-to-be discovered dual Amplituhedron.