论文标题
激发和幂律本地化的扩散在远程耦合的强序系统中
Diffusion of excitation and power-law localization in long-range-coupled strongly disordered systems
论文作者
论文摘要
我们研究了具有随机现场能量的一维晶格中激发的扩散,并确定性的远程耦合(跳)与距离成反比。在强烈无序的系统中观察到了三个扩散状态:短时弹道运动,中间时间的标准扩散以及长时间的固定相(饱和度)。我们提出了一个在强耦合方面有效的分析解决方案,该解决方案解释了观察到的动力学,并将弹道速度,扩散系数和渐近扩散范围与系统大小和通过简单公式的混乱强度联系起来。我们还表明,在长期从单个地点扩散的渐近极限中,职业形成了重型幂律分布。
We investigate diffusion of excitation in one- and two-dimensional lattices with random on-site energies and deterministic long-range couplings (hopping) inversely proportional to the distance. Three regimes of diffusion are observed in strongly disordered systems: ballistic motion at short time, standard diffusion for intermediate times, and a stationary phase (saturation) at long times. We propose an analytical solution valid in the strong-coupling regime which explains the observed dynamics and relates the ballistic velocity, diffusion coefficient, and asymptotic diffusion range to the system size and disorder strength via simple formulas. We show also that in the long-time asymptotic limit of diffusion from a single site the occupations form a heavy-tailed power-law distribution.