论文标题

在动脉自旋标记中与联合空间正则化的非线性拟合

Non-linear fitting with joint spatial regularization in Arterial Spin Labeling

论文作者

Maier, Oliver, Spann, Stefan M, Pinter, Daniela, Gattringer, Thomas, Hinteregger, Nicole, Thallinger, Gerhard G., Enzinger, Christian, Pfeuffer, Josef, Bredies, Kristian, Stollberger, Rudolf

论文摘要

多延迟单发动动脉自旋标记(ASL)成像提供准确的脑血流(CBF),此外,动脉传输时间(ATT)地图,但固有的低SNR可能具有挑战性。特别是使用非线性最小二乘正方形的标准配件在较差的SNR区域通常会失败,从而导致定量图的嘈杂估计。最新的拟合技术通过将先验知识纳入估计过程中,这通常会导致空间模糊。为此,我们提出了一种新的估计方法,其在CBF和ATT上具有联合空间总的广义变异正则化。这种联合正则化方法利用跨地图的共享空间特征来增强清晰度,并同时改善最终估计中的噪声抑制。提出的方法以三个级别进行评估,首先是在包括病理在内的合成幻象数据上,然后在体内摄取健康的志愿者,最后是缺血性中风后的患者数据。将定量估计值与两种参考方法,非线性最小二乘拟合和基于贝叶斯推论的最新ASL定量算法进行了比较。拟议的联合正规化方法的表现优于参考实现,从而大大增加了CBF和ATT中的SNR,同时保持了估计值的清晰度和定量准确性。

Multi-Delay single-shot arterial spin labeling (ASL) imaging provides accurate cerebral blood flow (CBF) and, in addition, arterial transit time (ATT) maps but the inherent low SNR can be challenging. Especially standard fitting using non-linear least squares often fails in regions with poor SNR, resulting in noisy estimates of the quantitative maps. State-of-the-art fitting techniques improve the SNR by incorporating prior knowledge in the estimation process which typically leads to spatial blurring. To this end, we propose a new estimation method with a joint spatial total generalized variation regularization on CBF and ATT. This joint regularization approach utilizes shared spatial features across maps to enhance sharpness and simultaneously improves noise suppression in the final estimates. The proposed method is evaluated at three levels, first on synthetic phantom data including pathologies, followed by in vivo acquisitions of healthy volunteers, and finally on patient data following an ischemic stroke. The quantitative estimates are compared to two reference methods, non-linear least squares fitting and a state-of-the-art ASL quantification algorithm based on Bayesian inference. The proposed joint regularization approach outperforms the reference implementations, substantially increasing the SNR in CBF and ATT while maintaining sharpness and quantitative accuracy in the estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源