论文标题
平行鱿鱼阵列的理论模型,磁通聚焦
A theoretical model for parallel SQUID arrays with fluxoid focussing
论文作者
论文摘要
我们已经开发了一个全面的理论模型,用于预测电压状态下平行鱿鱼阵列的磁场响应。将模型的预测与我们的实验数据进行了比较,我们的实验数据来自由YBCO薄膜制成的平行鱿鱼阵列,这些模型与宽阔的轨道,母线和铅形成型,并带有11个步进的Josephson连接。我们的理论模型使用约瑟夫森方程进行电阻分流的连接以及第二个金茨堡 - 兰道方程来得出一个耦合的一阶非线性微分方程的系统,以描述包括约翰逊噪声在内的约瑟夫森连接相差的时间进化。采用第二个伦敦方程式和生物 - 萨瓦特定律,使用流函数方法计算超电流密度分布,这导致了具有时间依赖性边界条件的流函数的2D二阶线性线性弗雷德·弗雷姆·integro-differential方程。该模型的新颖性是它在薄膜结构中到处都会计算出流函数,以确定每个鱿鱼阵列孔的时间进化过程中的通量。将我们的数值模型计算与我们的实验数据进行了比较,并预测了偏置与电压以及电压与磁场响应的前所未有的精度。该模型阐明了将Meissner屏蔽和当前拥挤的重视,以便正确地描述了液输注和偏置注射。此外,我们的模型说明了简单的集总元素方法的失败,以描述具有宽薄膜结构的平行鱿鱼阵列。
We have developed a comprehensive theoretical model for predicting the magnetic field response of a parallel SQUID array in the voltage state. The model predictions are compared with our experimental data from a parallel SQUID array made of a YBCO thin-film patterned into wide tracks, busbars and leads, with eleven step-edge Josephson junctions. Our theoretical model uses the Josephson equations for resistively shunted junctions as well as the second Ginzburg-Landau equation to derive a system of coupled first-order nonlinear differential equations to describe the time-evolution of the Josephson junction phase differences which includes Johnson noise. Employing the second London equation and Biot-Savart's law, the supercurrent density distribution is calculated, using the stream function approach, which leads to a 2D second-order linear Fredholm integro-differential equation for the stream function with time-dependent boundary conditions. The novelty of the model is that it calculates the stream function everywhere in the thin-film structure to determine during the time-evolution the fluxoids for each SQUID array hole. Our numerical model calculations are compared with our experimental data and predict the bias-current versus voltage and the voltage versus magnetic field response with unprecedented accuracy. The model elucidates the importance to fully take Meissner shielding and current crowding into account in order to properly describe fluxoid focussing and bias-current injection. Furthermore, our model illustrates the failure of the simple lumped-element approach to describe a parallel SQUID array with a wide thin-film structure.