论文标题

超快,零偏置,石墨烯光电探测器,带有聚合物栅极介电在被动光子波导上

Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides

论文作者

Mišeikis, Vaidotas, Marconi, Simone, Giambra, Marco A., Montanaro, Alberto, Martini, Leonardo, Fabbri, Filippo, Pezzini, Sergio, Piccinini, Giulia, Forti, Stiven, Terrés, Bernat, Goykhman, Ilya, Hamidouche, Louiza, Legagneux, Pierre, Sorianello, Vito, Ferrari, Andrea C., Koppens, Frank H. L., Romagnoli, Marco, Coletti, Camilla

论文摘要

我们报告针对电信和数据量应用程序的紧凑,可扩展,高性能,波导基于石墨烯的光电探测器(GPD),不受暗流影响。为了利用光热电离(PTE)效应,我们的设备依赖于带有静态顶部分裂门的石墨烯 - 聚合物 - 透明烯堆栈。聚合物介电(乙烯基醇)(PVA)使我们能够保留石墨烯质量并产生可控的P-N结。两种石墨烯层均使用通过化学蒸气沉积生长的对齐的单晶石墨烯阵列制造。 PVA的使用产生低电荷不均匀性8 x 10 $^{10} $ $ $ $ cm^{ - 2} $在电荷中立性点和一个大的Seebeck系数140 $ $ V k $^{ - 1} $,增强PTE效应。我们的设备是最快的GPD,其黑暗电流为零,显示出高达67 GHz的平坦频率响应,而无需滚动。这种性能是在被动,低成本的光子平台上实现的,并且不依赖纳米等离子结构。这与可扩展性和易于集成相结合,使我们的GPD成为下一代光学通信设备的有希望的构建块。

We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene-polymer-graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity 8 x 10$^{10}$ $cm^{-2}$ at the charge neutrality point, and a large Seebeck coefficient 140 $μ$V K$^{-1}$, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源