论文标题
Covid-19的感染动力学:锁定是有效的遏制工具吗?
Infection Kinetics of Covid-19: Is Lockdown a Potent Containment Tool?
论文作者
论文摘要
Covid-19正在肆虐一条毁灭性的小径,其大流行有史以来最高死亡率与感染的比率。缺乏疫苗和治疗性已通过锁定作为唯一的遏制方式使社会排斥。在6个维感染动力学模型中利用机器学习的预测能力,描绘了6个感染阶段的互动演化 - 健康易感性($ h $),易感性合并症($ p $),感染($ i $)($ i $)($ i $),恢复($ r $),herd免疫($ v $)和模型($ d $) - phiratity($ d $ d $) - 在战略锁定的各个阶段,有18个国家,除了上次数据培训外,最多30天。 PHIRVD将死亡率与感染率建立为正确的大流行描述,替代了繁殖数,并突出了早期和延长但战略性锁定对于含有继发性复发的重要性。 意义声明: 1。准确预测18个国家的日常死亡率概况,超出数据培训的最后数据30天。 2。对早期VS替代物的影响的精确量化。 3。准确预测继发性复发时间表/ 4。建立死亡率与感染的比率为正确的大流行描述符,替代了流行的繁殖数量选择,这是预测未来感染动力学和继发性激增的事实失败。 结果有可能重新定义健康的政策格局,尤其是鉴于继发性复发和未来可能的SARS-COV/埃博拉群体入侵。
Covid-19 is raging a devastating trail with the highest mortality-to-infected ratio ever for a pandemic. Lack of vaccine and therapeutic has rendered social exclusion through lockdown as the singular mode of containment. Harnessing the predictive powers of Machine Learning within a 6 dimensional infection kinetic model, depicting interactive evolution of 6 infection stages - healthy susceptible ($H$), predisposed comorbid susceptible ($P$), infected ($I$), recovered ($R$), herd immunized ($V$) and mortality ($D$) - the model, PHIRVD, provides the first accurate mortality prediction of 18 countries at varying stages of strategic lockdown, up to 30 days beyond last data training. PHIRVD establishes mortality-to-infection ratio as the correct pandemic descriptor, substituting reproduction number, and highlights the importance of early and prolonged but strategic lockdown to contain secondary relapse. Significance Statement: 1. Accurate prediction of the day-by-day mortality profiles of 18 countries, 30 days beyond the last data of data training. 2. Precise quantification of the impact of early-vs-later lockdown impositions. 3. Accurate prediction of secondary relapse timelines/ 4. Establishment of mortality-to-infected ratio as the correct pandemic descriptor substituting the popular choice of reproduction number, a proven failure in predicting future infection kinetics and secondary surge. The outcomes have potential to redefine healthy policy landscape, particularly in light of secondary relapse and possible future SARS-COV/Ebola group incursion.