论文标题

GTEA:通过时间边缘聚集在时间相互作用图上的归纳表示学习

GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation

论文作者

Xie, Siyue, Li, Yiming, Tam, Da Sun Handason, Liu, Xiaxin, Ying, Qiu Fang, Lau, Wing Cheong, Chiu, Dah Ming, Chen, Shou Zhi

论文摘要

在本文中,我们提出了图形的时间边缘聚集(GTEA)框架,用于在时间相互作用图(TIG)上的归纳学习。与以前的工作不同,GTEA在连续时间空间中建模相互作用序列的时间动力学,并同时利用图中图中的富节点和边缘/相互作用属性。具体而言,我们将一个序列模型与时间编码器集成在一起,以学习两个相邻节点之间的成对交互动力学。这有助于捕获沿历史上的节点对的复杂的时间交互模式,从而生成可以馈入GNN骨架中的边缘嵌入。通过汇总相邻节点的特征和相应的边缘嵌入,GTEA共同学习TIG的拓扑和时间依赖性。此外,为邻居聚集纳入了稀疏性引起的自我注意力专业方案,该方案突出了更重要的邻居并抑制了GTEA的微不足道噪音。通过共同优化序列模型和GNN主链,GTEA学习了更全面的节点表示,同时捕获了时间和图结构特征。在五个大型现实世界数据集上进行的广泛实验证明了GTEA优于其他电感模型。

In this paper, we propose the Graph Temporal Edge Aggregation (GTEA) framework for inductive learning on Temporal Interaction Graphs (TIGs). Different from previous works, GTEA models the temporal dynamics of interaction sequences in the continuous-time space and simultaneously takes advantage of both rich node and edge/ interaction attributes in the graph. Concretely, we integrate a sequence model with a time encoder to learn pairwise interactional dynamics between two adjacent nodes.This helps capture complex temporal interactional patterns of a node pair along the history, which generates edge embeddings that can be fed into a GNN backbone. By aggregating features of neighboring nodes and the corresponding edge embeddings, GTEA jointly learns both topological and temporal dependencies of a TIG. In addition, a sparsity-inducing self-attention scheme is incorporated for neighbor aggregation, which highlights more important neighbors and suppresses trivial noises for GTEA. By jointly optimizing the sequence model and the GNN backbone, GTEA learns more comprehensive node representations capturing both temporal and graph structural characteristics. Extensive experiments on five large-scale real-world datasets demonstrate the superiority of GTEA over other inductive models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源