论文标题
捕获限制空间中多个捕食者的扩散猎物
Capture of a diffusive prey by multiple predators in confined space
论文作者
论文摘要
在限制中对多个搜索者(捕食者)对扩散目标(猎物)进行扩散目标(猎物)的第一次搜索是随机过程文献中的一个重要问题。尽管已经在一些细节中研究了开放空间中的类似问题,但仍缺乏在狭窄空间中进行的系统研究。在本文中,我们研究了1,2和$ 3- $尺寸的此问题的第一个通过时间。由于限制,目标的生存概率在很大程度上以$ \ sim e^{ - t/τ} $为单位。与稀有捕获事件相关的特征捕获时间尺度$τ$的测量很具有挑战性。我们使用一种计算算法,该算法使我们能够以很高的精度估算$τ$。我们详细研究了$τ$作为系统参数的函数的行为,即搜索器$ n $的数量,目标相对于搜索者的相对扩散性$ r $以及系统大小。我们发现$τ$偏离了在静态目标的情况下看到的$ \ sim 1/n $缩放率,并且此偏差随$ r $和空间尺寸连续变化。
The first passage search of a diffusing target (prey) by multiple searchers (predators) in confinement is an important problem in the stochastic process literature. While the analogous problem in open space has been studied in some details, a systematic study in confined space is still lacking. In this paper, we study the first passage times for this problem in 1,2 and $3-$dimensions. Due to confinement, the survival probability of the target takes a form $\sim e^{-t/τ}$ at large times $t$. The characteristic capture timescale $τ$ associated with the rare capture events are rather challenging to measure. We use a computational algorithm that allows us to estimate $τ$ with high accuracy. We study in details the behavior of $τ$ as a function of the system parameters, namely, the number of searchers $N$, the relative diffusivity $r$ of the target with respect to the searcher, and the system size. We find that $τ$ deviates from the $\sim 1/N$ scaling seen in the case of a static target, and this deviation varies continuously with $r$ and the spatial dimensions.