论文标题

结合鲁棒控制器设计的先验知识和数据

Combining Prior Knowledge and Data for Robust Controller Design

论文作者

Berberich, Julian, Scherer, Carsten W., Allgöwer, Frank

论文摘要

我们提出了一个框架,用于系统地结合未知线性时间不变系统的数据,并在系统矩阵上或可靠控制器设计的不确定性上进行知识。我们的方法导致基于线性矩阵不平等(LMI)的可行性标准,该标准可确保与先验知识和可用数据一致的所有闭环系统的稳定性和性能。设计程序依赖于通过先验知识推断出的乘数组合,并从测量数据中学到的乘数,在后者中,采用了新颖和统一的干扰描述。虽然本文的大部分都集中在线性系统和输入状态测量上,但我们还基于嘈杂的输入输出数据和非线性不确定性提供了可靠的输出反馈设计的扩展。我们通过数字示例说明,我们的方法为同时利用先验知识和数据提供了灵活的框架,从而与数据驱动控制的方法相比,如果与黑箱的方法相比,如果保守主义和改善绩效。

We present a framework for systematically combining data of an unknown linear time-invariant system with prior knowledge on the system matrices or on the uncertainty for robust controller design. Our approach leads to linear matrix inequality (LMI) based feasibility criteria which guarantee stability and performance robustly for all closed-loop systems consistent with the prior knowledge and the available data. The design procedures rely on a combination of multipliers inferred via prior knowledge and learnt from measured data, where for the latter a novel and unifying disturbance description is employed. While large parts of the paper focus on linear systems and input-state measurements, we also provide extensions to robust output-feedback design based on noisy input-output data and against nonlinear uncertainties. We illustrate through numerical examples that our approach provides a flexible framework for simultaneously leveraging prior knowledge and data, thereby reducing conservatism and improving performance significantly if compared to black-box approaches to data-driven control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源