论文标题

在具有不平衡地形的部分可观察的环境中朝着安全的运动导航

Towards Safe Locomotion Navigation in Partially Observable Environments with Uneven Terrain

论文作者

Warnke, Jonas, Shamsah, Abdulaziz, Li, Yingke, Zhao, Ye

论文摘要

这项研究提出了一种在具有多层次安全保证的部分可观察到的环境中动态运动的综合任务和运动计划方法。这个分层的计划框架由高级符号任务计划者和低级相位空间计划器组成。在任务计划级别上的信念抽象可以使信念估计动态障碍位置,并通过避免碰撞来确保导航安全。高级任务计划者,即两级导航计划者,使用线性时间逻辑来进行机器人及其环境之间的反应性游戏综合,同时将低级安全的密钥帧策略纳入正式的任务规范设计中。合成的任务规划师命令一系列的运动动作,包括步行步长,步长高和划线角度变化到基础密钥帧决策者,这进一步确定了机器人质量中心顶点速度速度键帧。低级相位空间规划师使用降低的运动模型来生成符合直率和转向步行平衡安全标准的非周期轨迹。这些标准的特征在于对机势帧状态的限制,并用于通过可行性内核来定义密钥帧过渡策略。由敏捷性机器人设计设计的Cassie Bipedal机器人的模拟结果表明,在三维,部分可观察到的环境中进行了运动,该环境由动态障碍和不均匀的地形组成。

This study proposes an integrated task and motion planning method for dynamic locomotion in partially observable environments with multi-level safety guarantees. This layered planning framework is composed of a high-level symbolic task planner and a low-level phase-space motion planner. A belief abstraction at the task planning level enables belief estimation of dynamic obstacle locations and guarantees navigation safety with collision avoidance. The high-level task planner, i.e., a two-level navigation planner, employs linear temporal logic for a reactive game synthesis between the robot and its environment while incorporating low-level safe keyframe policies into formal task specification design. The synthesized task planner commands a series of locomotion actions including walking step length, step height, and heading angle changes, to the underlying keyframe decision-maker, which further determines the robot center-of-mass apex velocity keyframe. The low-level phase-space planner uses a reduced-order locomotion model to generate non-periodic trajectories meeting balancing safety criteria for straight and steering walking. These criteria are characterized by constraints on locomotion keyframe states, and are used to define keyframe transition policies via viability kernels. Simulation results of a Cassie bipedal robot designed by Agility Robotics demonstrate locomotion maneuvering in a three-dimensional, partially observable environment consisting of dynamic obstacles and uneven terrain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源