论文标题

CASGCN:根据信息扩散图预测未来级联增长

CasGCN: Predicting future cascade growth based on information diffusion graph

论文作者

Xu, Zhixuan, Qian, Minghui, Huang, Xiaowei, Meng, Jie

论文摘要

突然的信息级联反应会导致出乎意料的后果,例如极端观点,时尚趋势的变化以及谣言的无法控制的传播。这已经成为如何有效预测未来级联的大小的重要问题,尤其是对于在Twitter和Weibo等社交媒体平台上的大型级联来说。但是,现有方法不足以处理这个具有挑战性的预测问题。传统方法在很大程度上依赖于手工制作的功能或不切实际的假设。端到端的深度学习模型(例如经常性神经网络)不适合直接处理图形输入,并且无法处理嵌入级联图中嵌入的结构信息。在本文中,我们提出了一种用于级联增长预测的新型深度学习架构,称为CASGCN,该预测采用图形卷积网络从图形输入中提取结构特征,然后在进行级联特征上应用注意机制在进行级联尺寸预测之前将注意机制应用于提取的特征和时间信息上。我们对两个现实世界中的级联增长预测方案进行实验(即,在SINA微博上转发了知名度和DBLP上的学术论文引用),实验结果表明CASGCN比几种基线方法具有出色的性能,尤其是当级联大范围时。

Sudden bursts of information cascades can lead to unexpected consequences such as extreme opinions, changes in fashion trends, and uncontrollable spread of rumors. It has become an important problem on how to effectively predict a cascade' size in the future, especially for large-scale cascades on social media platforms such as Twitter and Weibo. However, existing methods are insufficient in dealing with this challenging prediction problem. Conventional methods heavily rely on either hand crafted features or unrealistic assumptions. End-to-end deep learning models, such as recurrent neural networks, are not suitable to work with graphical inputs directly and cannot handle structural information that is embedded in the cascade graphs. In this paper, we propose a novel deep learning architecture for cascade growth prediction, called CasGCN, which employs the graph convolutional network to extract structural features from a graphical input, followed by the application of the attention mechanism on both the extracted features and the temporal information before conducting cascade size prediction. We conduct experiments on two real-world cascade growth prediction scenarios (i.e., retweet popularity on Sina Weibo and academic paper citations on DBLP), with the experimental results showing that CasGCN enjoys a superior performance over several baseline methods, particularly when the cascades are of large scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源