论文标题
多矩阵模型的相图具有功能重新归化的ABAB交流
The phase diagram of the multi-matrix model with ABAB-interaction from functional renormalization
论文作者
论文摘要
在关键时期,离散的量子重力模型有望产生连续时空。最近的进步已在此类模型的背景下建立了功能性重归其化组方法,例如研究其关键特性并绘制其相图的实用工具。在这里,我们将这些技术应用于具有$ abab $互动可能与洛伦兹量子重力相关的多矩阵模型。我们表征了该模型的固定点结构和相图,为更通用的多矩阵或张量模型的功能性RG研究铺平了道路,该模型编码因果关系,并通过比较已知的结果对其在离散量子重力中的性能进行另一种强烈的测试。
At criticality, discrete quantum-gravity models are expected to give rise to continuum spacetime. Recent progress has established the functional renormalization group method in the context of such models as a practical tool to study their critical properties and to chart their phase diagrams. Here, we apply these techniques to the multi-matrix model with $ABAB$-interaction potentially relevant for Lorentzian quantum gravity in 3 dimensions. We characterize the fixed-point structure and phase diagram of this model, paving the way for functional RG studies of more general multi-matrix or tensor models encoding causality and subjecting the technique to another strong test of its performance in discrete quantum gravity by comparing to known results.