论文标题
用于性能评估和温度控制的综合磁铁的热模型
Thermal Model of an Omnimagnet for Performance Assessment and Temperature Control
论文作者
论文摘要
Omnimagnet是一种电磁设备,可以远程磁性操纵医疗植入物和微型机器人等设备。它由三个正交嵌套的螺线管组成,中间有铁磁芯。电磁阀内的电流导致焦耳加热,从而导致综合网络内的温度升高。如果温度超过电线绝缘的熔点,则会发生设备故障。因此,需要对综合网络中的传热研究,尤其是为了最大程度地提高设备的性能。首次提出了一个瞬态传热模型,该模型融合了所有三个传热模式,并通过实验数据进行验证,该模型的omnimimagnet的实验数据具有最大的均方根误差等于8 $ {\%} $(4 $^{\ circ} $ c)。这种瞬态模型在计算上并不昂贵。相对容易应用于具有不同结构的综合磁铁。该模型的准确性取决于输入数据的准确性。该代码用于在固定输入电流或固定时间间隔的最大安全输入电流下计算最大安全操作时间。最大的安全操作时间和最大安全输入电流取决于综合网的大小和结构以及所有综合材料的最低熔点。一项参数研究表明,在冷却过程中以及使用低输入电流加热期间增加对流传热是增加综合模型的最大操作时间的有效方法。热模型还以状态空间方程格式呈现,可在实时的Kalman滤波器电流控制器中使用,以避免由于热量过多而用于实时的Kalman滤波器电流控制器。
An Omnimagnet is an electromagnetic device that enables remote magnetic manipulation of devices such as medical implants and microrobots. It is comprised of three orthogonal nested solenoids with a ferromagnetic core at the center. Electrical current within the solenoids leads to Joule heating, resulting in undesired temperature increase within the Omnimagnet. If the temperature exceeds the melting point of the wire insulation, device failure will occur. Thus, a study of heat transfer within an Omnimagnet is a necessity, particularly to maximize the performance of the device. For the first time, a transient heat transfer model, that incorporates all three heat transfer modes, is proposed and validated with experimental data for an Omnimagnet with maximum root mean square error equal to 8${\%}$ (4$^{\circ}$C). This transient model is not computationally expensive. It is relatively easy to apply to Omnimagnets with different structures. The accuracy of this model depends on the accuracy of the input data. The code is applied to calculate the maximum safe operational time at a fixed input current or the maximum safe input current for a fixed time interval. The maximum safe operational time and maximum safe input current depend on size and structure of the Omnimagnet and the lowest melting point of all the Omnimagnet materials. A parametric study shows that increasing convective heat transfer during cooling, and during heating with low input currents, is an effective method to increase the maximum operational time of the Omnimagnet.The thermal model is also presented in a state-space equation format that can be used in a real-time Kalman filter current controller to avoid device failure due to excessive heating.