论文标题
旋转轨道莫特绝缘子中的分数化费米量子临界
Fractionalized fermionic quantum criticality in spin-orbital Mott insulators
论文作者
论文摘要
我们研究了具有旋转和轨道自由度的Mott绝缘子的二维模型中的拓扑阶段之间的过渡。这些模型在(2+1)维度中实现了分数化的gross-neveu $^\ ast $通用类中的费米子量子关键点。它们的特征是与普通的总开关同类产品相同的临界指数集,但具有不同的能量谱,反映了相邻阶段的非平凡拓扑。我们以方形晶格模型为例,为此,将其确切的映射到$ t $ - $ v $无旋转的费米子模型,使我们能够利用大型数值结果,以及在蜂窝状利台模型中,为此,我们采用了$ε$ - $ - $ - $ n $ n $估算重要行为的方法。我们的结果可能与具有$ d^1 $电子配置和强旋轨耦合的Mott绝缘子或Kitaev材料的扭曲双层结构相关。
We study transitions between topological phases featuring emergent fractionalized excitations in two-dimensional models for Mott insulators with spin and orbital degrees of freedom. The models realize fermionic quantum critical points in fractionalized Gross-Neveu$^\ast$ universality classes in (2+1) dimensions. They are characterized by the same set of critical exponents as their ordinary Gross-Neveu counterparts, but feature a different energy spectrum, reflecting the nontrivial topology of the adjacent phases. We exemplify this in a square-lattice model, for which an exact mapping to a $t$-$V$ model of spinless fermions allows us to make use of large-scale numerical results, as well as in a honeycomb-lattice model, for which we employ $ε$-expansion and large-$N$ methods to estimate the critical behavior. Our results are potentially relevant for Mott insulators with $d^1$ electronic configurations and strong spin-orbit coupling, or for twisted bilayer structures of Kitaev materials.