论文标题
Orthoreg:使用正常正规化的强大网络修剪
OrthoReg: Robust Network Pruning Using Orthonormality Regularization
论文作者
论文摘要
近年来,已广泛研究了卷积神经网络(CNN)的网络修剪。为了确定修剪一组过滤器对网络准确性的影响,最先进的修剪方法始终假设CNN的过滤器是独立的。这允许一组过滤器的重要性估计为单个过滤器的重要性之和。但是,现代网络中的过度参数化导致高度相关的过滤器,从而使该假设无效,从而导致不正确的重要性估计值。为了解决这个问题,我们提出了Orthoreg,这是一种原则上的正规化策略,可以在网络的过滤器中强制实施正常的过滤器相关性,从而可以可靠,有效地确定群体重要性估计值,提高原始网络的训练性以及有效的,有效的,同时的大型申报者。当在VGG-13,Mobilenet-V1和Resnet-34上用于迭代修剪时,Orthoreg始终在CIFAR-100和Tiny-ImageNet上的五个基线技术,包括最先进的技术。对于最近提议的早期票据假说,该假设声称网络可以在培训中进行早期修剪,并且可以在几个时期进行修剪以最大程度地减少培训支出,我们发现Orthoreg明显优于先前的工作。可在https://github.com/ekdeepslubana/orthoreg上获得代码。
Network pruning in Convolutional Neural Networks (CNNs) has been extensively investigated in recent years. To determine the impact of pruning a group of filters on a network's accuracy, state-of-the-art pruning methods consistently assume filters of a CNN are independent. This allows the importance of a group of filters to be estimated as the sum of importances of individual filters. However, overparameterization in modern networks results in highly correlated filters that invalidate this assumption, thereby resulting in incorrect importance estimates. To address this issue, we propose OrthoReg, a principled regularization strategy that enforces orthonormality on a network's filters to reduce inter-filter correlation, thereby allowing reliable, efficient determination of group importance estimates, improved trainability of pruned networks, and efficient, simultaneous pruning of large groups of filters. When used for iterative pruning on VGG-13, MobileNet-V1, and ResNet-34, OrthoReg consistently outperforms five baseline techniques, including the state-of-the-art, on CIFAR-100 and Tiny-ImageNet. For the recently proposed Early-Bird Ticket hypothesis, which claims networks become amenable to pruning early-on in training and can be pruned after a few epochs to minimize training expenditure, we find OrthoReg significantly outperforms prior work. Code available at https://github.com/EkdeepSLubana/OrthoReg.